探测器:
BF、DF、HAADF加速电压:
1kV-20kV连续可调电子枪:
肖特基场发射电子枪电子光学放大:
2,000,000x光学放大:
27-160x分辨率:
优于 1nm看了Pharos-STEM 扫描透射电子显微镜的用户又看了
虚拟号将在 180 秒后失效
使用微信扫码拨号
Phenom Pharos 台式场发射扫描电镜因其多功能性和**的成像性能赢得了良好的口碑 —— 即使是在传统较难观测的样品中也表现优异。直观的用户界面有助于将高分辨率图像呈现给用户, FEG 场发射电子源在 1-20kV 的加速电压范围内都提供了高分辨率。
Phenom Pharos STEM 台式场发射 SEM-STEM 电子显微镜,配备了 STEM 样品杯,从另一个维度提高了其成像能力和应用的多样性。
作为全球**台式场发射 SEM-STEM 电子显微镜,在较低的加速电压下,减少了电子束对样品的损伤,显著提高了图像的衬度。在台式扫描电镜下即可快速获得高分辨的 BF 像、DF 像、HAADF 像,且支持用户自定义成像。Pharos STEM 样品杯为材料领域的研究提供了高效、全面的表征方式。
BF 像:主要是样品正下方同轴的探测器接收透射电子和部分散射电子。影响明场像衬度(Contrast)的主要因素是样品的厚度和成分。样品越厚,原子序数(Z)越大,穿透样品的电子越少,图像就越暗,因此 BF 像对轻元素(Z 较小)比较敏感。
DF 像:主要是样品下方非同轴位置的探测器接收散射电子信号。
HAADF 像:主要是接收高角度的非相干散射电子信号。原子序数(Z)越大,散射角也越大,原子核对入射电子的散射作用越强,图像上更亮。因此又被称为 Z 衬度像。
三种成像模式各有特点,具有不同的成像优势,可以根据样品情况搭配使用,成像结果进行互相验证。
烟草花叶病毒的BSE 像、BF 像、 DF 像和 HAADF 像
对比扫描电镜的背散射电子图像(BSE),杆状的烟草花叶病毒在 BF 模式下更加直观。BF 模式更适合观察轻元素(Z 较小),轻元素散射作用较弱,因此在 HAADF 模式下较难清晰观测细节。
而杆状烟草花叶病毒周围较厚的脂质球,电子较难穿透,BF 像上相对较暗。在 DF 模式下,密度较大的脂质球表现出较强的衍射,因此在 DF 像上相对较亮。
规格参数:
系统兼容:Phenom Pharos G2 台式场发射扫描电镜
样品兼容:ø 3 mm TEM 载网(夹具固定)
成像时间:< 40 s*
成像模式:BF、DF、HAADF、 自定义**
成像工作流程:固定的 WD,设置**的探测器 ,完全集成的 UI
真空度:0.1, 10 & 60 Pa
分辨率:优于 1 nm
* 加载样品到呈现图像的时间
** STEM 具有 11 分割探测器,用户可以对其进行自定义选择
Pharos STEM 电子显微镜,利用 FEG 高亮度电子源,可在透射模式下对薄样品进行成像。专用的样品夹可轻松装载常规 3mm 直径透射电镜 (TEM) 载网,实现样品的快速、安全切换。STEM 样品杯可提供明场 (BF) 、暗场 (DF) 和高角度环形暗场 (HAADF) 像,并支持自定义选择成像模式。
2020-12-09
今年 11 月 2 日起,每日早七点至晚八点,包括延安高架、南北高架在内的多条道路禁止“外牌”、“临牌”小客车、未载客的出租车等通行。因为新能源汽车车牌较容易获得,不少人转投新能源汽车,因此带动了新能
2020-12-21
随着钢铁行业进入微利时代,生产具有更高附加值的高品质洁净钢也成为钢铁企业自身发展的需求。因此,洁净钢技术研究及其生产工艺控制技术目前已是各钢铁企业的重要课题。生产洁净钢的关键在于减少钢中的杂质,而控制
2020-12-21
2020-12-21
「特点速览」稳定可靠: 80年顶尖技术传承。独家采用 CeB6 晶体灯丝: 3000 h 超长使用寿命,平均 5 年换灯丝。面向工业 4.0 的自动化与 AI 智能扫描电镜:开放编程接口,打造定制化的
9月1日上午,以“扫描电子显微镜的新技术与新应用”为主题的学术讲座在扬州大学扬州碳中和技术创新研究中心401报告厅隆重举行。本次讲座旨在深入探讨扫描电子显微镜领域的前沿进展与应用创新,促进学术交流与技
固态电池(SSB)因其更高的能量密度、更长的使用寿命以及增强的安全性,已崭露头角,有望成为锂离子电池的继任者。尽管 SSB 具有这些潜力,但它们并非没有挑战。一个主要问题是电池阴极内部的颗粒接触失效。
生物样品最佳观察时间往往稍纵即逝,而传统透射电镜(TEM)的漫长档期让关键研究被迫等待,亚纳米级分辨率虽强,却难解燃眉之急。Pharos STEM 台式场发射生物电镜——把实验室级分辨率,装
摘要:随着汽车工业对质量与可靠性的要求日益提升,汽车清洁度检测已成为保障关键零部件稳定运行的核心环节。传统方法难以满足对微小颗粒的识别需求,因此,先进的扫描电镜(SEM)技术正被广泛应用于清洁度分析领
扫描电镜(SEM, Scanning Electron Microscope)作为半导体行业中不可或缺的高精度检测工具,凭借其纳米级分辨率和强大的表征能力,已广泛应用于芯片制造、材料开发、失效分析、工