看了原位体积测试系统的用户又看了
虚拟号将在 180 秒后失效
使用微信扫码拨号
原位体积测试概述
电芯在充放电过程中,电子会由外电路到达负极后再与负极表面的电解液发生氧化还原反应,生成气体。对电芯所生成的气体进行实时采集,能够根据气体生成速率和气体生成总量进行研究分析,推断电芯在充放电过程中的性能测试状况。现有技术一般采用“排水法”来检测电芯产气量,通过采集电芯产气时容器逸出的液体体积和单位时间内的逸出量,从而等量换算电芯产气的总量和产气速率。
然而,由于表面张力的作用,同时也受气候干燥条件和容器壁的粗糙度影响,液体在流动时容易蒸发或者残留在容器壁上,使得液体在容器上的逸出量往往少于实际的气体产出量,使得检测结果不准确,另外,以往的技术方法主要通过单次并多次测量电芯体积来记录数据,而无法实时监控电芯在测试过程中的产气量变化,比如电芯在存储与充放电过程中的产气量变化。
应用案例
1、LFP体系电芯过充产气体积分析
可在充放电过程中实时监控产气体积变化情况,LFP体系电芯在过充实验中,体积随着电池充电过程进行变化,可以看出过充时产气的拐点位置。
2、不同充放电体系膨胀体积变化情况
三款不同体系电芯的体积变化曲线,结合正负极材料脱嵌锂相变分析各体积变化曲线的差异,其中LFP体系电芯在充放电过程中会出现“驼峰”的现象,而LCO和NCM体系则没有该现象,且NCM电芯在充电恒压阶段会出现体积稍微减小的趋势。这些体积变化现象的差异对比,一方面能为锂电研发人员提供一种原位表征电芯体积膨胀性能的方法,另一方面也能为研究特定体系电芯的体积膨胀性能时提供数据机理参考。
3、不同温度下存储产气体积变化
在70℃条件下,NCM电芯总产气量小于0.4mL,体积变化百分比约6%,,而在85℃条件下,大约存储20min后,产气量开始显著增加,存储4h后,单包覆材料的总产气量达到2.4mL,体积变化百分比约46%,体积变化百分比约27%, 采用原位方法连续监控存储产气行为,可获得产气起始点和**点,有助于研发人员针对性的开展下一步研发工作。
暂无数据!
01、前言测试锂电材料的电阻率和压实密度是评估其电化学性能、工艺可行性和最终电池性能的关键步骤。电阻率(或电导率)直接影响锂离子电池的动力学性能和能量效率,可以通过电阻率测试探究导电剂的优化方向,从而
隔膜离子电导率是指隔膜在电解液中传导离子的能力,是衡量隔膜性能的重要指标之一。隔膜作为锂离子电池的重要组成部分,直接影响电池的电流、容量、循环寿命和安全性能。隔膜的离子电导率主要取决于其材料、结构和
01、前言在锂电池的生产中,极片电阻是影响电池性能的关键指标之一。而导电剂,这个添加量极少的路人甲,实则掌控着极片导电网络的命脉。极片由活性物质、粘结剂和导电剂组成,其中导电剂的作用是为电子搭建快速通